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Orbits in a central force field: Bounded orbits
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The nature of boundedness of orbits of a particle moving in a central force field is investigated.
General conditions for circular orbits and their stability are discussed. In a bounded central field
orbit, a particle moves clockwise or anticlockwise, depending on its angular momentum, and at the
same time oscillates between a minimum and a maximum radial distance, defining an inner and an
outer annulus. There are generic orbits suggested in popular texts displaying the general features of
a central orbit. In this work it is demonstrated that some of these orbits, seemingly possible at the
first glance, are not compatible with a central force field. For power law forces, the general nature
of boundedness and geometric shape of orbits are investigated.

I. INTRODUCTION

The central force motion is one of the oldest and widely
studied problems in classical mechanics. Several familiar
force-laws in nature, e.g., Newton’s law of gravitation,
Coulomb’s law, van-der Waals force, Yukawa interaction,
and Hooke’s law are all examples of central forces. The
central force problem gives an opportunity to test one’s
understanding of the Lagrange’s equation, Hamilton’s
equation, Hamilton Jacobi method, and classical pertur-
bation. It also serves as an introduction to the concept of
integrals of motion and conservation laws. We need only
to appeal to the principles of conservation of energy and
angular momentum to describe the nature and geometry
of the possible trajectories in central force motion. Most
books in classical mechanics1,2,3,4,5,6, treatise7,8, and ad-
vanced texts9,10 discuss the central force problem. In this
article we present some interesting features of bounded
orbits in a central field.

A. Kepler’s Laws

One of the most remarkable discoveries in the history of
physics is that of Keplerian orbits. A tremendous wealth
of data on planetary positions was collected by Tycho
Brahe and Johannes Kepler after detailed observation
spread over several decades. After a thorough analysis
of this data Johannes Kepler formulated three empirical
laws that described and correlated the motion of the five
planets then known:

1. Each planet moves in an elliptical orbit, with the
sun at one of its foci.

2. The radius vector from the sun to each planet
sweeps out equal areas in equal times.

3. The square of the periods (T 2) of the planets are
proportional to the cube of the lengths of the cor-
responding semimajor axes (a3).

B. Newtonian Synthesis

Almost 100 years later Newton realized that the plan-
ets go about in their nearly circular orbits around the sun
under the influence of the same force that causes an ap-
ple to fall to the ground, i.e., gravitation. Newton’s law
of gravitation gave a theoretical basis to Kepler’s laws.
Kepler’s laws can be derived from Newton’s law of grav-
itation; this is often referred to as the Newtonian syn-
thesis. Kepler’s first and third laws are valid only in the
specific case of inverse square force. There are, however,
certain general features which are observed in all cen-
tral field problems. They include (i) certain conserved
quantities (energy, and angular momentum), (ii) planer
nature of orbits, and (iii) constancy of areal velocity (Ke-
pler’s second law). A large class of central forces allows
circular orbits (stable or unstable), bounded orbits, and
even closed and periodic orbits. Certain common charac-
teristics about the generic shapes of bounded orbits can
also be ascertained.

II. EQUATIONS OF MOTION AND THEIR

FIRST INTEGRALS

A. Central field orbits: confinement in a plane

The central force motion between two bodies about
their center of mass can be reduced to an equivalent one
body problem in terms of their reduced mass m and their
relative radial distance r. Hence in this reduced system,
a body having the reduced mass moves about a fixed
center of force.

Consider the motion of a body under a central force,
F = F(r) = f(r)r̂ with the origin as its force center. The
potential V (r) from which this force is derived is also a
function of r alone, F = −∇V, V ≡ V (r).

On account of the central nature of the force, the me-
chanical properties of the body do not vary under ro-
tation in any manner around the center of force. Let
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the body be rotated through an infinitesimal angle δθ,
where the magnitude δθ is the angle of rotation while
the direction is that of the axis of rotation n̂. The
change in the radius vector from the origin to the body
is | δr |= rsin(θ)δθ, with δr being perpendicular to r

and δθ. Hence δr = δθ × r. The change in velocity is
similarly given by δv = δθ × v. The Lagrangian of the
system is a function of r and ṙ. The motion is governed
by the Lagrange’s equation,

d

dt

(

∂L

∂ṙ

)

− ∂L

∂r
= 0

If we now require that the Lagrangian of the system re-
main invariant under this rotation we obtain

δL =
∂L

∂r
· δr +

∂L

∂ṙ
· δṙ = 0 .

One can define generalized momentum as,

p =
∂L

∂ṙ

From the Lagrange’s equation we get,

ṗ
.
=

d

dt

(

∂L

∂ṙ

)

=
∂L

∂r

Replacing ∂L/∂ṙ by p and ∂L/∂r by ṗ in the equation
for δL we get,

ṗ · δθ × r + p · δθ × ṙ = 0 .

δθ · d

dt
(r × p) = 0 .

As δθ is arbitrary we conclude l = r × p is a conserved
quantity. l is called the angular momentum of the sys-
tem. Since l is a constant and is perpendicular to r it
follows that the radius vector of the particle lies in a
plane perpendicular to l. This implies that the motion
of the particle in a central field is confined to a plane.

B. Lagrangian and equations of motion

As the motion in a central force field is confined to a
plane, it suffices to use plane polar coordinates. One may
write the Lagrangian of the particle as,

L =
1

2
mṙ2 − V (r) =

1

2
m(ṙ2 + r2θ̇2) − V (r) . (1)

We assume the center of force to be at the origin. The
coordinates of the body of mass m undergoing the central
field motion are given by (r, θ).

The Lagrange’s equation for the θ and r coordinates
are given respectively by,

d

dt

(

∂L

∂θ̇

)

− ∂L

∂θ
= 0 (2)

d

dt

(

∂L

∂ṙ

)

− ∂L

∂r
= 0 (3)

θr

d θ

d θ

d

r

r

Area = 1/2 (r) (            )

r

FIG. 1: Area swept by radius vector

C. First integrals and conservation laws

The canonical momentum corresponding to θ is called
the angular momentum (or rather the magnitude of the
angular momentum that we discussed before),

pθ =
∂L

∂θ̇
= mr2θ̇ = l

As θ is a cyclic coordinate, i.e., the Lagrangian is inde-
pendent of θ, this angular momentum is conserved. This
can be shown from the Lagrange’s equation for θ.

d

dt

(

∂L

∂θ̇

)

− ∂L

∂θ
= 0

ṗθ =
d

dt
(mr2θ̇) = 0.

The corresponding integral of motion is,

mr2θ̇ = l (4)

and this l can easily be shown to be the magnitude of the
angular momentum vector l = r × p.

This conservation law is essentially equivalent to Ke-
pler’s 2nd Law:

The elementary triangular area swept by the radius
vector in an infinitesimal time interval dt is,

dA =
1

2
r(rdθ)

hence it follows from Eq. (4) that the rate of areal sweep
is a constant.

dA

dt
=

1

2
r2θ̇ =

l

2m
(5)

There is another first integral of motion associated
with the Lagrange’s equation for the r coordinate.

d

dt
(mṙ) − mrθ̇2 +

∂V

∂r
= 0
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FIG. 2: Constancy of angular momentum in an inverse square
potential. Total energy is 60% of the minimum of effective
potential Ṽ (r).

The force in terms of the potential (conservative force)
is given by, f(r) = −∂V/∂r, whence the above equation
becomes

mr̈ − mrθ̇2 = f(r)

Using the first integral of motion, one can convert this
second equation into an equation for r alone.

mr̈ = − d

dr

(

V +
1

2

l2

mr2

)

Integrating we get

1

2
mṙ2 +

1

2

l2

mr2
+ V (r) = E (6)

where E is a constant of integration, called the energy.
This is the law of conservation of total mechanical energy.

It is interesting to note that for motion in a general
force field, l = mr2θ̇ remains invariant even though r and
θ̇ vary with time (see Fig. 2). Similarly E = mṙ2/2 +
l2/(2mr2)+V (r) remains a constant even though ṙ and r
and hence mṙ2/2 and V (r) + l2/(2mr2) each varies with
time (see Fig. 3).

Lagrange’s equations are two second order Ordinary
Differential Equations (ODE) in r and θ. However they
decouple, i.e., each equation is expressible in terms of ei-
ther r or θ. On integrating each equation once we get
the first integrals of motion namely, the total mechanical
energy and the angular momentum. A further integra-
tion will yield the complete solution to the problem. This
second integration introduces two more constants of in-
tegration namely, the initial radial (r0) and angular (θ0)
positions.

kinetic energy

total energy

potential energy

-80

-60

-40

-20

0

20

40

60

0 1 2 3 4 5 6

FIG. 3: Constancy of total energy in an inverse square poten-
tial. Total energy is 60% of the minimum of effective potential
Ṽ (r).

D. Equation for the orbit

From the equation giving energy as a first integral of
motion, we get the expression for radial velocity,

ṙ =

√

2

m

(

E − V − l2

2mr2

)

(7)

On integration we get,

t =

∫ r

r0

dr
√

2/m(E − V − l2/(2mr2))
. (8)

This relation can be inverted to give r as a function of t,
r = r(t). The other first integral gives,

θ̇ =
l

mr2
.

Substituting the expression for r as a function of t, and
integrating,

θ − θ0 =
l

m

∫ t

0

dt

r(t)2
. (9)

These two expressions for r(t) and θ(t) express the equa-
tion of the orbit for the particle in a central field in terms
of time t as a parameter.

Instead of expressing the orbit parametrically in terms
of t, one often wants to express the orbit directly as an
equation connecting r and θ. Such an equation may be
obtained by eliminating t from the above expressions for
ṙ and θ̇.

dθ

dr
=

l/(mr2)
√

2/m(E − V (r) − l2/(2mr2))
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On integration this yields,

θ − θ0 =

∫ r

r0

l/(mr2)
√

2/m(E − V (r) − l2/(2mr2))
dr

For understanding the qualitative nature of motion in
a central field one looks at the equivalent one dimensional
problem.

ṙ =

√

2

m
(E − V (r) − l2

2mr2
)

=

√

2

m
(E − Ṽ (r)).

We call Ṽ the effective potential, introduced to make
the problem similar to that of a particle moving in a
one dimensional potential field. The effective radial force
(f̃(r)) is connected to the effective radial potential (Ṽ (r))
by the expected relation,

f̃(r) = −∂Ṽ (r)

∂r
(10)

At a point where the effective potential Ṽ (r) equals the
energy E, the radial velocity vanishes (ṙ = 0). In one
dimensional motion this corresponds to a particle com-
ing momentarily to rest, and having zero kinetic energy.
However in the case of central field, the motion is not
really one dimensional, and even for ṙ = 0, the particle

is not at rest (v = rθ̇θ̂), and it has a non-zero kinetic

energy ((1/2m)r2θ̇2).
For the inverse square force, as in the case of gravita-

tion, we have f(r) = −k/r2 and V (r) = −k/r. Effective
potential (see Fig. 4) is given by,

Ṽ (r) = −k

r
+

l2

2mr2
(11)

The following properties of the effective potential are
easily noted:

1. Ṽ (r) = 1/r2(l2/2m − kr), as r → 0 the term
within bracket is essentially l2/(2m) and hence

limr→0 Ṽ (r) → +∞

2. limr→∞ Ṽ (r) = 0

3. Ṽ (r) = −1/r(k − l2/2mr2) and for large values of

r, l2/2mr2 is negligible compared to k, hence Ṽ (r)
has a negative value.

4. At r∗ = l2/2mk the function Ṽ (r) intersects the r

axis, i.e., Ṽ (r∗) = 0.

5. Ṽ (r) reaches a minimum at r0 = 2 · r∗ = l2/mk.

With ∂Ṽ /∂r|r0
= 0 and ∂2Ṽ /∂2r|r0

> 0.

For total energy E = Ṽ (r0) the particle has zero radial
velocity at r = r0, and no other radial position is phys-
ically accessible, since ṙ becomes imaginary at r 6= r0.
This corresponds to circular motion.

(a)

(b)

(c)

V(r) ~ - 1/r

~
V(r)

l^2/(2mr^2) (a) circular orbit
(b) elliptic orbit
(c) elliptic orbit of higher eccentricity

r
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FIG. 4: Effective potential for an inverse square force

For 0 > E > Ṽ (r0) there is a range of radial positions

(rmax ≥ r ≥ rmin) for which E ≥ Ṽ (r). The particle can
move in this range of r with varying ṙ. The radial velocity
ṙ vanishes at the end points rmax and rmin where the
energy E equals the effective potential Ṽ and ṙ reaches a
maximum at r = r0 The points rmax and rmin are called
the turning points. The central field particle cannot move
beyond these points, as the energy becomes less than the
effective potential, and the expression for radial velocity
(ṙ) turns imaginary.

E < Ṽ (r0) is a physically impossible situation, since
no (radial) position is physically allowed for the particle.

For E ≥ 0 we have an unbounded motion, where the
particle can fly off to infinity. Thus in the case of inverse
square force field we can have bounded (E < 0) or un-
bounded (E ≥ 0) motion depending on the energy of the
particle. In particular for E = 0 it is parabolic and for
E > 0 it is hyperbolic.

III. EXISTENCE AND STABILITY OF

CIRCULAR ORBITS FOR CENTRAL FORCES

At all positions other than where the effective potential
is a minimum or a maximum, we have a net effective force
f̃(r) = −∂Ṽ /∂r 6= 0. When the total energy E is not

equal to the minimum of effective potential Ṽ (r), at the
points of instantaneous zero radial velocity the particle
is pushed away. If the effective potential has a minimum
and energy is greater than that minimum then the radial
distance has a lower and an upper bound and the particle
moves between these radial limits. On the other hand if
the effective potential has a maximum, and the energy is
less than that maximum, the effective force pushes the
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(a) spiral in
(b) circle
(c) spiral out

(a)

(b)

(c)
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FIG. 5: Spiralling orbits, f(r) ∼ −1/r4

particle away from the positions of zero radial velocity
in an inward or an outward spiral. If the total energy
is equal to the maximum or minimum of the effective
potential, the system can stay with zero radial velocity,
and hence move in a circular orbit.

The condition for circular orbit is,

∂Ṽ

∂r

∣

∣

∣

∣

∣

r0

=
∂V

∂r

∣

∣

∣

∣

r0

− l2

mr3
0

= 0 (12)

whence we get,

f(r0) = − ∂V

∂r

∣

∣

∣

∣

r0

= − l2

mr3
0

(13)

The negative sign on the right hand side clearly shows
that the force must be attractive. The particle moves in
a circular orbit, since the force of attraction due to the
central field provides the necessary centripetal force.

For a given attractive central force ( f(r) and V (r)
given ) it is possible to have a circular orbit of radius
r0 provided the angular momentum and energy of the
particle are given by,

l2 = −mr3
0f(r0) (14)

E = V (r0) +
l2

2mr2
0

(15)

However when the effective potential has a maximum
the system is in an unstable circular orbit. A small devi-
ation from this radial position causes the orbit to be un-
bounded. The effective force that comes into play makes
the particle move away from the position of zero radial
velocity in an inward or outward spiral (Fig. 5). When

the effective potential has a minimum, the effective forces
cause the particle to remain in a bound orbit confined
in an annular space. For small deviations the annular
radii are nearly the same, and hence the orbit is close to
a circle. One can understand the stability question by
studying the forces (restoring or unsettling) that come
into play when the system is moved infinitesimally from
the position of circular orbit.

The circular orbit is stable if,

∂2Ṽ

∂r2
> 0. (16)

That is equivalent to,

∂2Ṽ

∂r2
=

(

−∂f

∂r
+

3l2

mr4

)∣

∣

∣

∣

r0

> 0

∂f

∂r
|r0

<
3l2

mr0
4

Using Eq. (13),

∂f

∂r
|r0

< −3f(r0)

r0

(17)

IV. NATURE OF BOUNDED ORBITS

General bounded motion has both lower and upper
bounds. It means that the particle cannot approach
nearer than some minimum or move farther than some
maximum distance. One has to remember that the angu-
lar velocity has a constant sign, same as that of the con-
stant angular momentum, throughout the motion. How-
ever its magnitude decreases with increase in the radial
distance (∼ 1/r2). Together with the angular motion, the
radial distance changes from rmax to a rmin, then back
to rmax and so on. From this general nature of motion
two families of generic orbits are suggested in popular
texts11 (Fig. 6, Fig. 7). However it can be shown that
the generic types shown in the later figure (Fig. 7) are
not feasible for any attractive potential.

We consider below a general bounded orbit confined in
an annular region. We would like to investigate the na-
ture of the orbit close to the point where it touches the
inner or the outer annulus. Let us choose the reference
line (polar line) of the coordinate system such that the
orbit touches the annular ring at θ = 0, or more specifi-
cally at r = R, θ = 0. Since at this point P (r = R, θ = 0)
the orbit is at its closest (or farthest) approach from the
pole, (∂r/∂t)P = 0. As r is a function of θ, using Eq. (4)
we get for motion along the trajectory,

dr

dt
=

l

mr2

dr

dθ

hence

r′(0) =
dr

dθ

∣

∣

∣

∣

θ=0

= 0 (18)
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FIG. 6: Generic orbits in central field (allowed)

The equation of motion for r is given by,

mr̈ − mrθ̇2 = f(r)

From which we get r′′(θ) along the trajectory,

m
l

mr2

d

dθ

(

l

mr2

dr

dθ

)

− mr
l2

mr3
= f(r)

d2r

dθ2
=

mr4

l2
f̃(r)

= r +
mr4

l2
f(r)
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FIG. 7: Generic orbits in central field (not allowed)

One can expand r(θ) in a Taylor series in θ, and remem-
ber that r′(0) = 0,

r(θ)traj = r(0) + r′(0)θ + r′′(0)
θ

2!
+ h.o.

= r(0) +
mr(0)4

l2
f̃(r(0))

θ2

2!
+ h.o.

= r(0) +

(

r(0) +
mr(0)4

l2
f(r(0))

)

θ2

2!
+ h.o.

Consider a tangent to the annulus at the point P , Fig.
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r(  )

r

θ

r(  )
annulus

θ

θ

tan

traj

annul

Inner

tangent

trajectory

trajectory
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FIG. 8: Curvature of the trajectory in comparison to the
tangent to the inner annulus

8,

r(0)

r(θ)
= cos(θ)

which can be expanded to give r(θ)tan along the tangent,

r(θ)tan = r(0) + r(0)
θ2

2
+ h.o.

Notice that the constant or the θ independent terms in
r(θ)traj and r(θ)tan are equal, and the first leading power
of θ is θ2 in both the cases. The coefficient of θ2 (cur-
vature) will determine the nature of the trajectory in
reference to the tangent.

We first study the curvature of the orbit in reference
to the tangent. The force being attractive f(r(0)) < 0,
for small angular distance (∆(θ)) away from the point P ,

r(∆θ)traj < r(∆θ)tan (19)

which means that the orbit bends more sharply than the
tangent and stays closer to the inner annulus for nearby
points (Fig. 8). Hence the second type of orbits shown
in some texts (Fig. 7) are not possible for central forces.
For the outer annulus the analysis with respect to tan-
gent is not very meaningful as one can set up an even
stronger bound for its orbit, directly considering the po-
tential Ṽ (r). In this case the effective potential has a
positive slope with respect to the radius, and hence a
negative effective force (f̃(r) < 0). The orbit should not
only remain nearer than the tangent, but even nearer
than the outer annulus. This condition is confirmed if

θ
traj

r(  )

r(  )

Outer

θ

θ

tan

tangent

trajectory
(not allowed)

annulus

annul
r

trajectory
(allowed)

trajectory
(not allowed)

FIG. 9: Curvature of the trajectory in comparison to the outer
annulus

we study the orbit near the point P where it touches the
outer annulus.

r(∆θ)traj = r(0) +
mr(0)4

l2
f̃(r)

(∆θ)2

2!
+ h.o.

hence

r(∆θ)traj < r(0) = rmax (20)

This confirms that the outer annulus is indeed the outer
bound of the trajectory. The nature of the orbit near the
point of contact P at the outer annulus is shown in figure
9.

V. BOUNDED ORBITS FOR THE POWER LAW

CENTRAL FORCE

A. Existence of stable circular orbit

For the case of a power law central potential

V (r) =
k

rn
, f(r) = − nk

rn+1
(21)

From the stability condition Eq. (17),

∂f

∂r
|r0

< −3f(r0)

r0

we find,

(n + 1)nk

rn+2
0

< −3

(

− k

rn+1
0

)

1

r0

n < 2 (22)
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FIG. 10: Effective potential for f(r) ∼ −1/r4 force

Hence the circular orbit is stable for an attractive power
law potential that varies slower than inverse square (or a
force that varies slower than inverse cube).

B. Study of boundedness of orbits

1. V (r) = −a/rn where n > 2

Consider the case when n > 2. We have the effective
potential,

Ṽ (r) = − a

rn
+

l2

2mr2
(23)

1. Ṽ (r) = −1/rn(a − l2 · rn−2/(2m)), and as r → 0
we may neglect l2 · rn−2/(2m) in comparison to a,

thus limr→0 Ṽ (r) = −∞.

2. limr→∞ Ṽ (r) = 0.

3. For large but finite r, Ṽ (r) = −1/r2(a/rn−2 −
l2/(2m)), and a/rn−2 is negligible compared to

l2/(2m), and hence Ṽ (r) is positive.

4. Ṽ (r) intersects the r axis at r∗ where (r∗)n−2 =
2am/l2.

5. Ṽ (r) has a maximum at r0 where rn−2
0 = anm/l2.

For a maximum point of Ṽ we should have
∂Ṽ /∂r |r0

= 0 and ∂2Ṽ /∂r2 |r0
< 0.

∂Ṽ

∂r
=

an

rn+1
− l2

mr3
= 0 .

For the point of extremum

r0
n−2 =

amn

l2
.

Finding the second derivative of Ṽ with respect to
r at the point r0,

d2Ṽ

dr2
= −an(n + 1)

rn+2
+

3l2

mr4

=
1

r4

(

−an(n + 1)

rn−2
+

3l2

m

)

=
1

r4
0

(

−(n + 1)
l2

m
+

3l2

m

)

=
1

r4
0

l2

m
(2 − n) < 0

Hence it is a point of maximum. For E > Ṽ (r0) we

always have an unbounded orbit. For E < Ṽ (r0) the
orbit is semibounded, bounded above or bounded below,
according to its initial state. The particle either spirals in
or spirals out. For E = Ṽ (r0) we get an unstable circular
orbit.

2. V (r) = −a/rn where n = 2

The effective radial potential is Ṽ (r) = −a/r2 +
l2/(2mr2). This is essentially an attractive or repulsive
inverse square term.

Ṽ (r) = − ã

r2
, ã > 0 if a >

l2

2m

ã < 0 if a <
l2

2m

This potential cannot give circular orbit ever. If the ef-
fective potential is attractive and E < 0 it has an upper
bound of radial distance. A typical orbit would therefore
be an inward spiral. For a repulsive effective potential
we will have outward spiral moving to infinite radial dis-
tance.

3. V (r) = −a/rn where 2 > n > 0

In this case the effective potential is,

Ṽ (r) = − a

rn
+

l2

2mr2
(24)

We have the following properties of Ṽ (r)

1. Ṽ (r) = 1/r2(l2/2m−a/rn−2) and as r → 0 we may
neglect a/rn−2 in comparison to l2/2m, and thus

limr→0 Ṽ (r) → +∞.

2. limr→∞ Ṽ (r) = 0.
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~
V(r)

l^2/(2m r^2)

V(r) ~ -1/r
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FIG. 11: Effective potential for f(r) ∼ −1/r2 force

3. Ṽ (r) = −1/rn(a − l2/2mr2−n) and for large but
finite values of r, l2/2mr2−n is negligible compared

to a, hence Ṽ (r) is negative.

4. Ṽ (r) intersects the r axis at r∗ where (r∗)2−n =
l2/(2am).

5. Ṽ (r) reaches a minimum at r0 where r0
2−n =

l2/amn.

For a minimum point of Ṽ we should have
∂Ṽ /∂r |r0

= 0 and ∂2Ṽ /∂r2 |r0
> 0.

∂Ṽ

∂r
=

an

rn+1
− l2

mr3
= 0 .

For the point of extremum

r0
2−n =

l2

amn
.

Finding the second derivative of Ṽ with respect to
r at the point r0,

d2Ṽ

dr2
= −an(n + 1)

rn+2
+

3l2

mr4

=
1

r4

(

−an(n + 1)

rn−2
+

3l2

m

)

=
1

r4
0

(

−(n + 1)
l2

m
+

3l2

m

)

=
1

r4
0

l2

m
(2 − n) > 0

Hence it is a point of minimum. For this case the orbit
can be bounded or unbounded depending on the total
energy E of the particle.

~
V(r)

l^2/(2m r^2)

V(r) ~ ln(r)
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FIG. 12: Effective potential for f(r) ∼ −1/r force

4. V (r) = a ln r

This corresponds to one over r force f(r) ∼ −a/r. The
effective potential is given by,

Ṽ (r) = a ln r +
l2

2mr2
(25)

We have the following properties of Ṽ (r)

1. limr→0 Ṽ (r) → +∞.

2. limr→∞ Ṽ (r) → +∞.

3. There is no point of intersection with the r axis,
and Ṽ (r) is always positive.

4. Ṽ (r) reaches a minimum at r0 = l/
√

am.

For a minimum point of Ṽ we should have
∂Ṽ /∂r |r0

= 0 and ∂2Ṽ /∂r2 |r0
> 0.

∂Ṽ

∂r
=

a

r
− l2

mr3

for the point of extremum

r2
0 =

l2

am

The second derivative of Ṽ at r = r0,

d2Ṽ

dr2
= − a

r2
+

3l2

mr4

=
1

r2

(

−a +
3l2

mr2

)

=
1

r2
· 2a > 0



10

~
V(r)

V(r) ~ r^2

l^2/(2m r^2)
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FIG. 13: Effective potential for f(r) ∼ −r force

Hence it is a point of minimum. The orbit is always
bounded.

5. V (r) = arn where n > 0

For this potential the effective potential is given by,

Ṽ (r) = arn +
l2

2mr2
n > 0 (26)

We have the following properties of Ṽ (r)

1. limr→0 Ṽ (r) → +∞.

2. limr→∞ Ṽ (r) → +∞.

3. There is no point of intersection with the r axis,
and Ṽ (r) is always positive.

4. Ṽ (r) has a minimum at r0, rn+2
0 = l2/amn.

For a minimum point of Ṽ we should have
∂Ṽ /∂r |r0

= 0 and ∂2Ṽ /∂r2 |r0
> 0.

∂Ṽ

∂r
= anrn−1 − l2

mr3

for the point of extremum

r0
n+2 =

l2

amn

The second derivative of Ṽ with respect to r,

d2Ṽ

dr2
= an(n − 1)rn−2 +

3l2

mr4

=
1

r4

(

an(n − 1)rn+2 +
3l2

m

)

=
1

r4

l2

m
(2 + n) > 0

Hence it is a point of minimum. The orbit is always
bounded.

The findings for the general power law potential can
be summarized as follows,

V (r) = sign(n)arn n 6= 0 (27)

f(r) = −abs(n)arn−1 (28)

and

V (r) = b ln r (29)

f(r) = − b

r
(30)

TABLE I: Dependence of boundedness on power law.

n of V (r) ∼ arn nature of boundedness

) −∞,−2( always unbounded

−2 spiralling orbit

) − 2, 0( bounded or unbounded depending on E

0 (ln r) always bounded

)0, +∞( always bounded

C. Stable bounded orbit, geometric shape

The stable bounded orbits in a power law central field
can have the following forms

1. V (r) = −a/rn, 0 < n ≤ 2

2. V (r) = b log r

3. V (r) = a · rn, n > 0

In all the above cases the derivative of V (r) with respect
to r is always positive, and hence the force is necessarily
attractive (f(r) = −∂V (r)/∂r < 0).

In the first case the effective one dimensional potential
Ṽ (r) goes to infinity as r → 0. Ṽ (r) has a minimum at
some r = r0, and it has a negative slope for all r < r0,
and positive slope for all r > r0. For E = Ṽ (r0) we get

stable circular orbit, and for Ṽ (r0) < E < 0. the orbits
are still bounded. For cases (2) and (3) the circular orbit
is stable, and orbits are always bounded for any energy.
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TABLE II: Dependence of stability of circular orbits on power
law.

n of V (r) ∼ arn stability of circular orbits

) −∞,−2) unstable

) − 2,∞( stable

VI. CONCLUSION

Existence of bounded orbit for a large class of attrac-
tive central field has been discussed. The generic nature
of central field bounded orbits is analytically derived.
Certain class of these orbits (Fig. 7) presented in popular
texts1, are shown to be non-feasible.

Small deviation from circularity in the case of central
field is often expressed in terms of inverse of radial dis-
tance (u = 1/r).

u = u0 + a · cos(βθ)

r =
r0

1 + a · r0 · cos(βθ)

where r0 = 1/u0. It is interesting to note that these

orbits are sometime mistakenly identified with diagrams
of the form shown in Fig. 711. The above expression in
fact corresponds to a class of orbits that look generically
like those shown in Fig. 6.

The generic features of central force orbits discussed
here have been verified by computer simulation for a large
class of central force fields. The figures shown here (Fig.
2, 3, 5 and 6) were generated by these simulations. Stu-
dents interested in studying and generating such orbits
will find Ref.12 helpful.
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